
Comparison operators
Arithmetic Strings

Less than < lt

Greater than > gt

Less than or equal <= le

Greater than or equal >= ge

Equality == eq

Inequality != ne

Boolean operators
Description Example

C-style Logical AND
operator && ($a && $b) is false

Logical AND operator and ($a and $b) is false

C-style Logical OR
operator || ($a || $b) is true

Logical OR operator or ($a or $b) is true

C-style Logical NOT
operator ! !($a) is false

Logical NOT operator not not($a) is false

Quotes ($foo = 5;)
Single-quotes - Literal

data enclosing
$bar = 'it is worth $foo'; it is worth $foo

Double-quotes -
Interpolated data

enclosing
$bar = "it is worth $foo"; it is worth 5

Escape characters
$bar = "it is \"worth\" $foo"; it is "worth" 5
$bar = 'it is \'worth\' $foo'; it is 'worth' $foo

Without quotes
$bar = q(it is 'worth' $foo); it is 'worth' $foo

$bar = qq(it is "worth" $foo); it is "worth" 5

Assoc Operators Description
left terms and list operators See below.

left -> Infix dereference operator

=++ Auto-increment (magical on strings).

-- Auto-decrement.

right ** Exponentiation.

right \ Reference to an object (unary).

right ! ~ Unary negation, bitwise complement.

right + - Unary plus, minus.

left = ~
Binds a scalar expression to a pattern
match.

left ! ~ Same, but negates the result.

left * / % x Multiplication, division, modulo, repetition.

left + - . Addition, subtraction, concatenation

left >> << Bitwise shift right, bitwise shift left.

named unary

operators
E.g. sin, chdir, -f, -M.

< > <= >=

lt gt le ge
Numerical relational operators.
String relational operators.

== != <=>

eq ne cmp

Numerical equal, not equal, compare.
Stringwise equal, not equal, compare.
Compare operators return -1 (less), 0
(equal)
or 1 (greater).

left & Bitwise AND.

left | ˆ Bitwise OR, exclusive OR.

left && Logical AND.

left || Logical OR.

..
In scalar context, range operator.
In array context, enumeration.

right ? : Conditional (if ? then : else) operator.

right = += -= *= etc. Assignment operators.

left ,
Comma operator, also list element
separator.

left =>
Same, enforces the left operand to be a
string.

list operators

(rightward)
See below.

right not Low precedence logical NOT.

left and Low precedence logical AND.

left or xor Low precedence logical OR, exclusive OR.

Cheat Sheet SeriesNetwork Programming with Perl

Perl Help
Install Package $ sudo apt-get install perl-doc

perldoc perldoc Look up Perl documentation in Pod format
perldoc perltoc Perl documentation Table of Contents (ToC)
perldoc perl Basics language interpreter
perldoc perlfunc List of built-in Perl functions

perldoc -f <function_name> Help with a specific function

perldoc perlop List of Perl operators and precedence
perldoc perlmodlib For constructing perl modules and finding existing ones
perldoc perllocal Locally installed modules list (if any)
perldoc <module_name> Documentation for specific module

Arrays
@arr = (1..3); Array initialization

$i = @arr; Number of elements in the array

@arr = split(/-/ ,$text); Split the string into $text

push(@arr, $s); Append $s to @arr

$arr = pop(@arr); Removes the last element in the array

chop(@arr); Removes the last character in the array

Special variables
@ARGV array which stores all the command line arguments
@ENV hash of program’s environment

Run mode options
-e Single line of script

-w Warnings

-c Checks syntax

-n Input loop without printing

-p Printing an input loop

-a Automatic split

-M Load a module

-U Unsafe operations mode

-v Version and patch level of script

References
\ reference

[] arrayref

{ } hashref

\() List of refs

Variables
$var Default variable

$var[20] 21st element of array @var

$p = \@var Now $p is a reference to @var

$$p[20] 21st element of array referenced by $p

$var[-1] Last element of array @var

$var[$x][$y] $y-th element of $x-th element of array @var

$var{’JAN’} A value from ‘hash’ %var

$p = \%var Now $p is a reference to hash %var

$$p{’JAN’} A value from hash referenced by $p

$#var Last index of array @var

@var The entire array

@var[5,6,7] A slice of array @var

@var{’X’,’Y’} A slice of %var; same as ($var{’X’},$var{’Y’})

%var The entire hash;

$var{’a’,1,...} Emulates a multidimensional array;

Special Variables
$ Default variable

$/ The input record separator, newline by default

$\ The output record separator for the print operator

$(The real GID (Group ID) of this process

$) The effective GID (Group ID) of this process

$& The string matched by the last successful pattern match

$`
The string preceding whatever was matched by the last
successful pattern match

$'
The string following whatever was matched by the last
successful pattern match

$ARGV Contains the name of the current file when reading from <>

@ARGV
The array @ARGV contains the command-line arguments
intended for the script

%ENV The hash %ENV contains your current environment

@_
Within a subroutine the array @_ contains the parameters
passed to that subroutine

@INC
Contains the list of places that the do EXPR , require, or use
constructs look for their library files

$~
The name of the current report format for the currently selected
output channel

$^
The name of the current top-of-page format for the currently
selected output channel

$^A The current value of the write() accumulator for format() lines

$^L What formats output as a form feed. The default is \f

$^T
The time at which the program began running, in seconds since
the epoch (beginning of 1970)

$^X The name used to execute the current copy of Perl

$!
Each element of %! has a true value only if $! is set to that value
- %ERRNO

$@
The Perl error from the last eval operator, i.e. the last exception
that was caught

$?
The status returned by the last pipe close, backtick (``)
command, successful call to wait() or waitpid(), or from the
system() operator

$. Current line number for the last filehandle accessed.

$%
The current page number of the currently selected output
channel

$=
The current page length (printable lines) of the currently
selected output channel. The default is 60

$-
The number of lines left on the page of the currently selected
output channel

$|
If set to nonzero, forces a flush right away and after every write
or print on the currently selected output channel

$0 Contains the name of the program being executed

$+
The text matched by the highest used capture group of the last
successful search pattern

Command-line Arguments
-0[octal/hexadeci

mal]
Specifies the input record separator ($/) as an octal or hexadecimal
number

-a Turns on autosplit mode when used with a -n or -p

-c
Causes Perl to check the syntax of the program and then exit
without executing it

-C [number/list] The -C flag controls some of the Perl Unicode features.

-d, -dt Runs the program under the Perl debugger

-Dletters,

-Dnumber
Sets debugging flags (only if your perl binary has been built with
debugging enabled)

-e commandline May be used to enter one line of program

-E commandline
Like -e, except it implicitly enables all optional features (in the main
compilation unit)

-f Disable executing $Config{sitelib}/sitecustomize.pl at startup

-F pattern Specifies the pattern to split on for -a (regex // , "" , or '')

-h Prints summary if the options

-m -mmodule executes use module (); before executing your program

-M -Mmodule executes use module ; before executing your program

-n Input loop in the script without line printing

-p Input loop in the script with line printing

-S
Makes Perl use the PATH environment variable to search for the
program

-T Turns on taint so you can test

-v Prints the version and patchlevel of your perl executable

-V
Prints summary of the major perl configuration values and the
current values of @INC

-w Prints warnings about dubious constructs

-xdirectory
Tells Perl that the program is embedded in a larger chunk of
unrelated text

Socket Programming
Server-side Method

socket() call- socket(SOCKET, DOMAIN, TYPE, PROTOCOL);

bind() call -bind(SOCKET, ADDRESS);

listen() call- listen(SOCKET, QUEUESIZE);

accept() call - accept(NEW_SOCKET, SOCKET);

Server-side Socket Script Example
#!/usr/bin/perl -w

Filename : serversocket.pl

use strict;

use Socket;

use port 7999

my $port = shift || 7999;

my $proto = getprotobyname('tcp');

my $server = "localhost"; # Host IP running the server

create a socket

socket(SOCKET, PF_INET, SOCK_STREAM, $proto)

or die "cannot open socket $!\n";

setsockopt(SOCKET, SOL_SOCKET, SO_REUSEADDR, 1)

or die "cannot make reusable $!\n";

bind to a port followed by listne

bind(SOCKET, pack_sockaddr_in($port, inet_aton($server)))

or die "cannot bind to port $port! \n";

listen(SOCKET, 5) or die "listen: $!";

print "SERVER socket started on port $port\n";

accept a connection

my $client_addr;

while ($client_addr = accept(NEW_SOCKET, SOCKET)) {

send message to close connection

my $name = gethostbyaddr($client_addr, AF_INET);

print NEW_SOCKET "new socket welcome";

print "Connection established $name\n";

close NEW_SOCKET;

}

Client-side Method
connect() call -connect(SOCKET, ADDRESS);

Client-side Socket Script Example
!/usr/bin/perl -w

Filename : clientsocket.pl

use strict;

use Socket;

start host and port

my $host = shift || 'localhost';

my $port = shift || 7999;

my $server = "localhost"; # Host IP address of the server

create the socket and connect to the port

socket(SOCKET,PF_INET,SOCK_STREAM,(getprotobyname('tcp'))[2])

or die "Cannot create a socket $!\n";

connect(SOCKET, pack_sockaddr_in($port, inet_aton($server)))

or die "Cannot connect to port $port! \n";

my $line;

while ($line = <SOCKET>) {

print "$line\n";

}

close SOCKET or die "close: $!";

Relevant Perl Functions
abs Absolute value

accept Accept an incoming socket connection

bind Binds an address to a socket

binmode Prepare binary files for input/output

chdir Change current working directory

chmod Changes the permissions on a file/list of files

chop Remove the last character from a string

chown Change the ownership of the file

close Close file

closedir Close directory

connect Connect to a remote socket

crypt One-way encryption

delete Deletes a value from a hash

die Raise an exception

dump Create a core dump immediately

eof End of file

eval Compile and run code

exit Terminate running s program

exp Exponential

fork Create a new process just like the existing one

gethostbyaddr Get host record IP address

gethostbyname Get host record given name

getlogin Return who is logged in at this TTY

getnetbyname Get networks record given name

getnetent Get next networks record

getpeername FInd the other end of a socket connection

getprotobyname Get protocol record given name

getprotobynumber Get protocol record numeric protocol

getprotoent Get next protocols record

getpwent Get next passwd record

getpwnam Get passwd record given user login name

getpwuid Get passwd record given user ID

getservbyname Get services record given its name

getservbyport Get services record given numeric port

getservent Get next services record

getsockname Retrieve the sockaddr for a given socket

getsockopt Get socket options on a given socket

hex Convert a string to a hexadecimal number

join Join a list into a string using a separator

kill Send a signal to a process or process group

length Return the number of bytes in a string

listen Register your socket as a server

m Match a string with a regular expression pattern

mkdir Create a directory

msgrcv Receive a SysV IPC message from a message queue

msgsnd Send a SysV IPC message to a message queue

my Declare and assign a local variable (lexical scoping)

package Declare a separate global namespace

print Output a list to a filehandle

printf Output redirect to a filehandle

push Append one or more elements to an array

q Singly quote a string

qq Doubly quote a string

qr Compile pattern

quotemeta Quote regular expression magic characters

qw Quote a list of words

qx Backquote quote a string

rand Retrieve the next pseudorandom number

read Fixed-length buffered input from a filehandle

readdir Get a directory from a directory handle

readline Fetch a record from a file

readpipe Run a system command and collect standard output

recv Receive a message via a Socket

rename Change a filename

return Exit function early

rmdir Remove a directory

send Send a message via a socket

shift Remove the first element of an array

shutdown Terminate half of the socket connection

socket Create a socket

sort Sort a list of values

sqrt Square root function

syscall Execute an arbitrary system call

